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This paper compares the Hou-Xue-Zhang four-factor model with the Fama-French five-factor 
model from an investing perspective both in- and out-of-sample. Without margin requirements 
and model uncertainty, the Hou-Xue-Zhang model outperforms the Fama-French model. However, 
the outperformance could become negligible if an investor is subject to margin requirements and 
model uncertainty. The Hou-Xue-Zhang model shows similar power as the Fama-French model 
in describing the covariance matrix of asset returns. Overall, the two models do not make a 
difference for investing in a realistic setting.

1. Introduction

Much of asset pricing research involves searching for factors to improve the understanding of the cross-section of stock returns. 
Based on the neoclassical Tobin 𝑞-theory, Hou et al. (2015) propose a four-factor model, which can explain 29 out of 36 significant 
anomalies. Concurrently, motivated by the dividend discount model, Fama and French (FF5, 2015a, 2016) propose a five-factor 
model that explains anomalies such as the low market beta, share repurchases, low stock return volatility, etc. In a follow-up study, 
Hou et al. (2019) compare the pricing power of HXZ with FF5 and conclude that HXZ largely subsumes FF5 and is able to explain 
more anomalies.

This paper asks whether HXZ is a better model for investing relative to FF5. There are three reasons for this question. First, as 
shown by Pástor and Stambaugh (2000), a model that is better for pricing is not necessarily better for investing, because investors 
are usually subject to margin requirements and model uncertainty that prevent them from implementing certain extreme investment 
strategies suggested by asset pricing models. Second, investing involves both the mean and covariance of asset returns. A model that 
is worse for pricing is not necessarily worse for investing. There could be factors that account for substantial return comovements, 
but they are not priced or have very low risk premiums (Constantinides, 1980). Although these factors do not improve the description 
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of average asset returns, they are important for an investor to control portfolio risk (Lewellen, 2023). Finally, pricing errors may not 
be a desirable criterion to assess a model, because, in-sample, “it is not difficult to data mine factor models that explain a large cross-

section of anomalies” (Tian, 2021). Instead, investing provides an economic criterion for model comparison that accommodates 
pricing errors and allows one to compare asset pricing models out-of-sample, which is advocated by MacKinlay (1995) and Ang 
(2014), among others.

This paper compares the investing performance of HXZ with FF5 assuming the investor is subject to margin requirements and 
model uncertainty. Specifically, we focus on the portfolio allocation problem in the standard mean-variance framework. To make the 
optimal portfolio implementable, the investor faces a margin requirement ranging from 0% to 50% (Pástor and Stambaugh, 2000). 
Fama and French (2015b) show that, without a short selling constraint, it is easy for an investor who is investing in two anomalies 
to have a leverage ratio of more than 300, which is apparently unrealistic in practice. Moreover, because the distribution of asset 
returns is unknown, the investor imposes a factor model, either HXZ or FF5, to reduce the dimension of the estimation problem 
and to allocate her wealth among the factors. Although this restriction often improves the portfolio performance (MacKinlay and 
Pástor, 2000), the investor faces uncertainty regarding the model’s pricing ability. Following Pástor and Stambaugh (2000) and 
Wang (2005), we assume that the investor has a prior belief, specified with varying degrees of confidence in the factor model, and 
computes the optimal portfolio with her posterior belief, which is updated by the data.

We consider 15 anomaly portfolios in Novy-Marx and Velikov (2016) as the non-benchmark risky assets to invest.1 We classify 
the anomalies into two groups. The first group consists of five anomalies that can be explained by HXZ but not FF5, i.e., the alpha 
of each anomaly is insignificant with HXZ but significant with FF5. The average alphas are 0.13% (𝑡 = 0.63) and 0.67% (𝑡 = 3.45) 
when using the two models. The second group consists of 10 anomalies that cannot be explained by either HXZ or FF5. In this case, 
the average alphas are 0.72% (𝑡 = 4.11) and 0.75% (𝑡 = 4.44). These two groups of anomalies are intentionally classified to explore 
whether HXZ is better for investing when it performs better than or the same as FF5 for pricing.

We first compare the in-sample investing performances between the two models. When an asset pricing model cannot explain 
the average returns of risky assets with significant alphas, imposing the model on the return-generating process can lead to biased 
estimates for the predictive mean and covariance matrix of asset returns, and therefore, results in certainty-equivalent return (CER) 
losses relative to the case without imposing any model. As such, an asset pricing model is better for investing if it generates smaller 
CER losses. Without a margin requirement, we find that HXZ uniformly outperforms FF5. For example, the CER loss for an investor 
with a perfect confidence in HXZ is over 13% per year less than the CER loss for an investor with a perfect confidence in FF5. 
However, the outperformance of HXZ is shrunk dramatically when there is a margin requirement. For instance, a 50% margin 
requirement shrinks the HXZ outperformance to be less than 3%. In this case, it is suggested that even the investor who uses HXZ 
invests in redundant assets, assets that are explained by HXZ with insignificant alphas.

We then compare the out-of-sample investing performances. To do so, we perform two exercises. The first exercise assumes that 
asset returns are independent and identically distributed (i.i.d) over time, and uses a bootstrap simulation to compare the out-of-

sample CERs between the two models. The second exercise relaxes the i.i.d assumption and compares the out-of-sample CERs with 
real time data. We use an expanding window approach. At the end of each month, we estimate the predictive mean and covariance 
matrix with the most up-to-date data, and apply the resulting optimal portfolio to the next month’s returns. Then, we calculate the 
out-of-sample CERs with the realized portfolio returns. In either exercise, because the investor has to estimate the model parameters, 
the estimation error or model uncertainty reduces the outperformance of HXZ further. With a 50% margin requirement, the two 
models perform virtually the same. Without margin requirements, FF5 even performs better when the investor does not have high 
confidence in HXZ.

Finally, we explore how HXZ and FF5 describe the covariance matrix of asset returns. A better model for investing could be 
the result of its superior ability to describe the mean, the covariance matrix, or both. We compare the performances of the global-

minimum-variance portfolios between the two models, which solely use the predictive covariance information for portfolio allocation. 
The result shows that the two models perform virtually the same, no matter which group of anomalies is used as the non-benchmark 
assets.

The studies that are most closely related to this paper are Pástor and Stambaugh (2000) and Wang (2005), which incorporate 
model uncertainty, measured by investors’ varying beliefs about asset pricing models, into the framework of portfolio allocation. 
Focusing on the Fama-French three-factor model and the Daniel and Titman (1997) characteristic model, Pástor and Stambaugh 
(2000) find that the two models generate indistinguishable performances under model uncertainty and margin requirements. This 
paper concentrates on the two most recent competing factor models and finds that HXZ and FF5 perform similarly for investing, 
even in the case when they have different degrees of pricing ability on the non-benchmark assets.2 Wang (2005) focuses on model 
uncertainty and does not consider the effect of margin requirements. Moreover, despite its importance for investing, these two papers 
do not consider out-of-sample performance.

This paper is also related to the literature in portfolio allocation with factor-based asset pricing models. To evaluate the perfor-

mance of different factor models for the covariance structure of individual stock returns, Chan et al. (1998, 1999) show that the 
Fama-French three-factor model does a fair job constructing the global-minimum-variance portfolio. Also focusing on the estima-

1 Novy-Marx and Velikov (2016) consider 32 anomalies in total, but only 15 are significant when using the FF5 as the benchmark. The data can be downloaded 
from https://sites .psu .edu /assayinganomalies /code /overview/.

2 After our paper was firstly posted at SSRN on March 16, 2016, Kan et al. (2022) explore the effect of estimation errors on the mean-variance frontiers spanned 
by the factors of the two models. Detzel et al. (2023) and Li et al. (2023) examine how linear and nonlinear transaction costs affect the factor performance of the two 
2

models, respectively. Interestingly, all the three papers reach a similar conclusion as ours.

https://sites.psu.edu/assayinganomalies/code/overview/
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Table 1

Summary statistics of factors. Panel A reports the summary statistics of asset pricing factors, where MKTHXZ, ME, I/A, and ROE are the market, size, investment, 
and profitability factors in HXZ, and MKT, SMB, HML, CMA, and RMW are the market, size, value, investment, and profitability factors in FF5, respectively. 𝑡-stat is 
the 𝑡-statistic from the test that the average return of the factor is zero, and is calculated using White heteroskedasticity robust standard error. AC(1) represents the 
first-order autocorrelation. Annualized Sharpe ratio (SR) for each individual factor is calculated as the mean return divided by its standard deviation and multiplied 
by 

√
12. Panel B reports the cross-sectional correlations of the factors.

Panel A: Summary statistics

Mean 𝑡-stat Std Skew Kurt AC(1) SR

MKTHXZ 0.51 2.51 4.61 −0.58 5.11 0.08 0.39

ME 0.31 2.20 3.14 0.64 9.02 0.03 0.34

I/A 0.44 5.33 1.87 0.12 4.91 0.06 0.82

ROE 0.57 4.85 2.62 −0.75 8.01 0.10 0.75

MKT 0.53 2.57 4.61 −0.55 5.00 0.08 0.40

SMB 0.23 1.71 3.08 0.43 7.48 0.03 0.26

HML 0.39 2.96 3.01 −0.03 5.54 0.14 0.46

CMA 0.37 4.25 2.00 0.35 4.74 0.12 0.66

RMW 0.29 2.87 2.25 −0.44 14.4 0.18 0.44

Panel B: Correlation matrix

MKTHXZ ME I/A ROE MKT SMB HML CMA RMW

MKTHXZ 1.00 0.25 −0.37 −0.19 1.00 0.25 −0.32 −0.39 −0.24
ME 1.00 −0.12 −0.31 0.25 0.98 −0.07 −0.01 −0.38
I/A 1.00 0.06 −0.36 −0.15 0.69 0.90 0.10

ROE 1.00 −0.18 −0.38 −0.09 −0.09 0.67

MKT 1.00 0.25 −0.32 −0.39 −0.23
SMB 1.00 −0.11 −0.05 −0.39
HML 1.00 0.70 0.15

CMA 1.00 −0.03
RMW 1.00

tion of the covariance structure, Briner and Connor (2008) explore the trade-off between estimation errors and model specification 
errors.3

The remainder of the paper is organized as follows. Section 2 reviews the HXZ and FF5 factor models and discusses the importance 
of comparing them from the perspective of investing. Section 3 presents a framework for making portfolio allocation and shows that 
HXZ and FF5 perform similarly for investing if the investor is subject to margin requirements and model uncertainty. Section 4

explores the source of the difference between the two models. Section 5 concludes.

2. New factor models

This section reviews the HXZ and FF5 factor models and discusses the importance of comparing them from an investing perspec-

tive. We focus on these two models because they are representative and are motivated by two different theories.4

The HXZ model is motivated by the neoclassical 𝑞-theory of investment and consists of four factors: a market factor (MKT), a 
size factor (ME), an investment factor (I/A), and a profitability factor (return on equity, ROE). The first factor is the market excess 
return and the last three factors are constructed from a triple (2 ×3 ×3) sort on size, investment-to-assets, and return-on-equity. More 
specifically, size is the market equity, which is stock price per share times shares outstanding from the Center for Research in Security 
Prices, I/A is the annual change in total assets divided by one-year-lagged total assets, and ROE is income before extraordinary items 
divided by one-quarter-lagged book equity.

The FF5 model is based on the dividend discount valuation theory and adds an investment (conservative-minus-aggressive, CMA) 
factor and a profitability (robust-minus-weak, RMW) factor to the Fama-French three-factor model, which consists of market, size 
(small-minus-big, SMB), and value (high-minus-low, HML) factors. More specifically, CMA is defined as the difference between the 
returns on diversified portfolios of low and high investment stocks and RMW is defined as the difference between the returns on 
diversified portfolios of stocks with robust and weak profitability.

Table 1 presents summary statistics of the HXZ and FF5 factors in the sample period of 1972:01–2013:12. Panel A reports the 
average return (mean), 𝑡-statistic from the test that the average return of the factor is zero, standard deviation, skewness, kurtosis, 
first-order autocorrelation, and annualized Sharpe ratio. Among the seven descriptive statistics, mean and standard deviation are 
reported in percent per month. The average monthly returns on the factors are all more than two standard errors above zero, except 
for the FF5 size factor, which has an average monthly return of 0.23% (𝑡 = 1.71). The HXZ size factor has a higher average monthly 
return of 0.31%, with a 𝑡-statistic of 2.20.

3 Excellent books that consider portfolio allocation with factor models include Brandt (2010), Connor et al. (2010), and Ang (2014).
4 Subsequent models, such as Stambaugh and Yuan (2017) and Daniel et al. (2020), are variations of these two models. The MGMT factor in Stambaugh and Yuan 

(2017) and the FIN factor in Daniel et al. (2020) are variations of the investment factor, and the PERF and PEAD factors in the two papers are variations of the 
3

profitability factor.
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Fig. 1. This figure plots the proportion of firms with significant alpha (at the 5% level) for each factor model over time. The alpha of each firm is calculated with 
a rolling window of 60 months, with a requirement of at least 36 observations. Gray bars indicate NBER recessions. The sample period is 1972:01–2013:12. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Although both HXZ and FF5 use annual asset growth as the proxy for investment, the HXZ investment factor I/A has a higher 
average monthly return (0.44% versus 0.37%) and a lower standard deviation (1.87% versus 2.00%) than the FF5 investment factor 
CMA. As a result, I/A has a higher annualized Sharpe ratio than CMA (0.82 versus 0.66). Moreover, I/A is less persistent than CMA 
and their first-order autocorrelations are 0.06 and 0.12, respectively.

The most striking difference between HXZ and FF5 is the profitability factor. First, the HXZ profitability factor ROE uses monthly 
earnings data, whereas the FF5 profitability factor RMW uses annual operating profitability data. Hou et al. (2015) argue that the 
ROE factor is designed to capture anomalies, such as price momentum, earnings surprise, and financial distress, which are all studied 
at a monthly frequency. Next, since the ROE factor contains the most up-to-date information about future ROE, its standard deviation 
is slightly higher than the CMW factor (2.62% versus 2.25%), and its average monthly return almost doubles (0.57% versus 0.29%). 
This is reflected directly in their annualized Sharpe ratios, 0.75 and 0.44. Finally, ROE has a more negative skewness (−0.75 versus 
−0.44) and a smaller kurtosis (8.01 versus 14.4) than RMW.

Panel B of Table 1 reports the contemporaneous correlations of all of the factors. The market factors in the HXZ and the FF5 
models have a perfect correlation of 1, and the size factors have a correlation of 0.98. Together with the descriptive statistics in Panel 
A, we assume that the market and size factors in the two models are indistinguishable and use the returns of MKT and SMB in the 
FF5 model for portfolio allocation throughout the paper.5 The negative correlations of MKT with the investment and profitability 
factors suggest the necessity of new factors that can hedge market risk. The two investment factors have a correlation of 0.90, and 
the two profitability factors have a correlation of 0.67. An interesting observation is that the FF5 value factor has high correlations 
with the investment factors and low correlations with the profitability factors, suggesting that the redundancy of HML for pricing, 
shown in FF5 (2015a), is mainly due to the investment factor.

Table 1 raises a question about the main difference in the two models in explaining the cross-section of stock returns. Using factor 
spanning regressions, Hou et al. (2019) compare the two models and find that HXZ can fully describe FF5 in terms of alpha. As such, 
they conclude that FF5 is in essence a noisy version of the 𝑞-factor model.

However, there are two concerns about the conclusion. First, the comparison in Hou et al. (2019) is ex post. The conclusion may 
change if we compare them ex ante. At the end of each month, we regress individual stock returns on the factors of the two models 
using the past 60-month observations, and examine how many stocks are mispriced. Fig. 1 plots the proportions of firms that are 
mispriced by HXZ and FF5, respectively. Surprisingly, there are a lot of months where HXZ has worse pricing performance, say 2005 
and 2013. Second, alpha is not an appropriate metric for model comparison and can generate counterintuitive results.6 For example, 
over the sample period of 1972:01–2013:12, the monthly alpha of the momentum factor is 0.78% (𝑡 = 3.94) for the CAPM model but 
is 0.95% (𝑡 = 4.82) for the Fama-French three-factor model, which is in stark contrast to most studies, if not all, that the three-factor 
model is a better pricing model. Another example is from Fama and French (2016) who find that the FF5 model exaggerates, instead 

5 In portfolio allocation, when assets 𝑖 and 𝑗 are highly correlated, the estimation of the covariance is highly volatile with extreme entries on (𝑖, 𝑖), (𝑖, 𝑗), (𝑗, 𝑖) and 
(𝑗, 𝑗), resulting in extreme portfolio positions in assets 𝑖 and 𝑗 that swing dramatically over time.
4

6 Levy and Roll (2016) also show that with an optimization framework alpha is a bad target for investing.
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Fig. 2. This figure plots the mean-variance frontiers (in % per month) for investing in the HXZ four factors, the FF5 five factors, or the joint factors of HXZ and FF5.

Table 2

This table reports the results of testing whether factors in FF5 can be spanned by the HXZ four factors. 𝑊 is the Wald test under conditional homoskedasticity, 𝑊𝑒

is the Wald test under the i.i.d. elliptical distribution, 𝑊𝑎 is the Wald test under the conditional heteroskedasticity, 𝐽1 is the Bekerart-Urias test with the Errors-in-

Variables (EIV) adjustment, 𝐽2 is the Bekerart-Urias test without the EIV adjustment, and 𝐽3 is the DeSantis test. All of the six tests have an asymptotic Chi-Squared 
distribution with 2𝑚 degrees of freedom, where 𝑚 is the number of non-benchmark factors. As a comparison, the last column reports the GRS statistics. The 𝑝-values 
are reported in the parentheses.

𝑊 𝑊𝑒 𝑊𝑎 𝐽1 𝐽2 𝐽3 GRS

FF5 224.6 103.2 126.5 75.7 73.3 173.6 0.62

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.69)

CMA 23.2 12.9 15.4 12.4 12.4 16.7 0.13

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.72)

RMW 97.2 41.1 49.9 22.1 21.9 37.9 0.23

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.63)

of shrinking, the accrual anomaly. The FF5 alpha is 0.31% (𝑡 = 2.27) and the Fama-French three-factor alpha is 0.27% (𝑡 = 1.96) over 
the sample period of this paper. In general, Barillas and Shanken (2017) show that zero alpha for a non-benchmark asset is neither a 
sufficient nor a necessary condition for model comparison.

In terms of investing, Fig. 2 plots the mean-variance frontiers for investing in the factors of HXZ, FF5, or both, where the market 
and size factors in the two models are assumed to be the same and refer to the MKT and SMB factors in FF5. Three observations follow 
the figure immediately. First, the frontier of FF5 does not lie inside or overlaps that of HXZ. Second, the global minimum-variance 
of investing in the HXZ is different from that of the FF5. Specifically, the standard deviation and mean of the global minimum-

variance for investing in HXZ are respectively 1.03% and 0.44%, which are in contrast to 0.97% and 0.34% for investing in FF5. 
This difference suggests that the HXZ factors cannot mimic the global minimum-variance portfolio of FF5. Lastly, if one invests in 
both the HXZ and FF5 factors (FF5’s five factors plus HXZ’s I/A and ROE factors), the standard deviation and mean of the global 
minimum-variance are 0.94% and 0.38%, respectively. Therefore, this strategy can reduce the minimum-variance and improve its 
expected return relative to investing in HXZ or FF5 alone.

According to Barillas and Shanken (2017, 2018), a factor model is better for pricing if it can price the factors in the competing 
model with zero alphas. Similarly, a factor model is better for investing if it can mimic the performance of the competing model, 
i.e., it outperforms any portfolio spanned by the competing model in terms of the Sharpe ratio. As such, we turn to Huberman and 
Kandel (1987) and run a mean-variance spanning test on the hypothesis as to whether the competing factors’ returns can be spanned 
or replicated in the mean-variance space of the factor model.

Following Kan and Zhou (2012), we carry out six spanning tests: Wald test under conditional homoscedasticity, Wald test under 
independent and identically distributed (i.i.d.) elliptical distribution, Wald test under conditional heteroscedasticity, Bekerart-Urias 
spanning test with errors-in-variables (EIV) adjustment, Bekerart-Urias spanning test without the EIV adjustment and DeSantis 
5

spanning test. The six spanning test results reported in Table 2 strongly reject the hypothesis that the FF5 factors are inside the 
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mean-variance frontier of the HXZ factors. Delving deeper, we also test whether the FF5’s investment and profitability factors can be 
replicated by the HXZ factors, and find that the answer is negative. Hence, it not clear whether the HXZ model is better for investing, 
which is the focus of this paper. For comparison, in the last column of Table 2, we conduct the Gibbons-Ross-Shanken (GRS) test and 
show an opposite result: The HXZ model largely subsumes the FF5 factors.

3. Comparing factor models in portfolio allocation

This section presents the mean-variance portfolio allocation problem under model uncertainty and margin requirements. The 
objective is to compare asset pricing models from the perspective of investing. For a given investment universe, we calculate the 
portfolio that is selected by an investor who has a prior belief in HXZ or FF5, and compare the performances of the two models in-

and out-of-sample.

3.1. Portfolio allocation under model uncertainty and margin requirements

Consider the portfolio allocation problem in a universe with a risk-free asset and 𝑛 risky assets. Without loss of generality, we 
assume that the risk-free rate 𝑟𝑓 is constant over time throughout the paper. Let 𝑟𝑡 = (𝑟′1𝑡, 𝑟

′
2𝑡)

′ be the long-short spread returns, as in 
Pástor and Stambaugh (2000), where the long side is a risky asset and the short side is either a risky asset or a risk-free asset, 𝑟1𝑡 is 
the first 𝑚 non-benchmark assets, and 𝑟2𝑡 is the last 𝑘 (= 𝑛 −𝑚) benchmark assets. For example, when HXZ is used as the benchmark 
model, 𝑟2𝑡 is the HXZ four-factor returns and the HML, CMA, and RMW factor returns are included in 𝑟1𝑡, which then has 𝑛 − 4
elements. Similarly, when FF5 is used as the benchmark model, 𝑟2𝑡 is the FF5 five-factor returns and the I/A and ROE factor returns 
are simply included in 𝑟1𝑡, which then has 𝑛 − 5 elements.

Suppose 𝑟𝑡 follows a multivariate normal distribution and is i.i.d. over time. The true mean and covariance matrix are denoted as 
follows corresponding to the 𝑚 assets and 𝑘 factors:

𝜇 =
[
𝜇1
𝜇2

]
, 𝑉 =

[
𝑉11 𝑉12
𝑉21 𝑉22

]
, (1)

which can be summarized in a regression model:

𝑟1𝑡 = 𝛼 +𝐵𝑟2𝑡 + 𝑢𝑡, (2)

where 𝑢 follows a multivariate normal distribution with mean zero and covariance matrix equal to Σ. With this factor structure, one 
can write the mean and covariance matrix of the risky assets as

𝜇 =
[
𝛼 +𝐵𝜇2

𝜇2

]
, 𝑉 =

[
𝐵𝑉22𝐵

′ + Σ 𝐵𝑉22
𝑉22𝐵

′ 𝑉22

]
. (3)

The asset pricing model is true if and only if 𝛼 = 0𝑚×1, where 0𝑚×1 is an 𝑚 × 1 vector of zeros.

In the portfolio allocation framework using asset pricing models, the mean-variance investor chooses to believe or not to believe 
the asset pricing model. If the investor does not believe the asset pricing model at all, she estimates 𝜇 and 𝑉 without restricting 𝛼 to 
zero. The maximum likelihood estimates of 𝛼, 𝐵, and Σ are denoted by �̂�, �̂�, and Σ̂, respectively. The investor estimates 𝜇 and 𝑉 in 
(3) as:

�̂� =
[
�̂�1
�̂�2

]
=
[
�̂� + �̂��̂�2

�̂�2

]
, 𝑉 =

[
�̂�𝑉22�̂�

′ + Σ̂ �̂�𝑉22
𝑉22�̂�

′ 𝑉22

]
, (4)

where �̂�2 and 𝑉22 are the sample mean and covariance matrix of 𝑟2𝑡.
When the investor has a dogmatic belief about the asset pricing model, 𝜇 and 𝑉 can be estimated by imposing 𝛼 = 0𝑚×1. Let �̄�

and Σ̄ be the maximum likelihood estimates of 𝐵 and Σ with the restriction. The estimates of 𝜇 and 𝑉 are

�̄� =
[
�̄��̂�2
�̂�2

]
, 𝑉 =

[
�̄�𝑉22�̄�

′ + Σ̄ �̄�𝑉22
𝑉22�̄�

′ 𝑉22

]
. (5)

In this paper, we assume that the investor places a confidence level of 𝜔 in the asset pricing model. Let 𝑅 = {𝑟𝑡, 𝑡 = 1, ⋯ , 𝑇 } and 
�̂�2 = �̂�′

2𝑉
−1
22 �̂�2 be the squared Sharpe ratio of the ex ante tangency portfolio with the same mean and covariance matrix of the 𝑘

factors. With a Bayes updating, Wang (2005) shows that the investor estimates the predictive mean and covariance matrix as:

�̃� = E(𝑟𝑇+1|𝑅,𝜔) =
[
�̂�1 +𝜔(�̄��̂�2 − �̂�1)

�̂�2

]
, (6)

𝑉 =Var(𝑟𝑇+1|𝑅,𝜔) =
[

𝜓0 +𝜔𝜓1 +𝜔2𝜓2 𝑏[𝜔�̄� + (1 −𝜔)�̂�]𝑉22
𝑏𝑉22[𝜔�̄� + (1 −𝜔)�̂�]′ 𝑏𝑉22

]
, (7)

where
6

𝜓0 = 𝑏�̂�𝑉22𝑝�̂�
′ + ℎ𝛿Σ̂, (8)
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𝜓1 = 𝑏(�̄� − �̂�)𝑉22�̂�′ + 𝑏�̂�𝑉22(�̄� − �̂�)′ + ℎ(𝛿 − 𝛿)Σ̂ + ℎ𝛿(Σ̄ − Σ̂), (9)

𝜓2 = 𝑏(�̄� − �̂�)𝑉22(�̄� − �̂�)′ + ℎ(𝛿 − 𝛿)(Σ̄ − Σ̂), (10)

and where 𝛿, 𝛿, 𝑏, and ℎ are scalars and are defined as follows:

𝛿 = 𝑇 (𝑇 − 2) + 𝑘

𝑇 (𝑇 − 𝑘− 2)
− 𝑘+ 3
𝑇 (𝑇 − 𝑘− 2)

⋅
�̂�2

1 + �̂�2
, (11)

𝛿 = (𝑇 − 2)(𝑇 + 1)
𝑇 (𝑇 − 𝑘− 2)

, (12)

𝑏 = 𝑇 + 1
𝑇 − 𝑘− 2

, (13)

ℎ = 𝑇

𝑇 −𝑚− 𝑘− 1
. (14)

From (6) and (7), the HXZ and FF5 models imply different restrictions on 𝛼 and yield different predictive means and covariance 
matrices. As a result, their optimal portfolios are different. When 𝜔 = 0, the predictive mean and covariance are the sample mean and 
covariance matrix, which are unbiasedly estimated without the restriction on 𝛼. When 𝜔 = 1, the predictive mean and covariance 
matrix are fully determined by the estimates that restrict 𝛼 to zero.

Let 𝑥 denote the 𝑛-vector with the 𝑖th element 𝑥𝑖. With �̃� and Σ̃, the Bayesian investor is assumed to choose 𝑥 to maximize the 
mean-variance objective function:

max
𝑥

𝑥′�̃� − 𝛾

2
𝑥′𝑉 𝑥, (15)

where 𝛾 is the coefficient of relative risk aversion. For simplicity, we assume that 𝛾 is equal to three throughout the paper. Without 
any constraint, the optimal portfolio weight �̃� is

�̃� = 1
𝛾
𝑉 −1�̃� = 1

𝛾

[
Σ̃−1�̃�

𝑉 −1
22 �̃�2 − �̃�′Σ̃−1�̃�

]
. (16)

One important property in (16) is that if some of the non-benchmark assets in 𝑟1 have non-zero alphas, the investor with 
benchmark assets of 𝑟2 should improve her portfolio Sharpe ratio by changing her portfolio weights on the non-benchmark assets 
in proportion to their alphas. The alpha of a non-benchmark asset, calculated with respect to a given asset pricing model, measures 
the change in the portfolio’s Sharpe ratio that is driven by a marginal increase in the asset weight of the portfolio. Thus, the sign of 
alpha is the direction of the marginal adjustment in portfolio weight space that yields the maximal increase in the portfolio’s Sharpe 
ratio. Therefore, alphas explain the optimal way to marginally adjust the portfolio relative to the benchmark: increase the weights 
of non-benchmark assets with positive alphas, and decrease the weights with negative alphas.

In the framework of asset pricing, by the mathematical definition, the adjustment to the portfolio weight can be infinitesimal. 
However, in the framework of investing, the adjustment is actually finite as the investor is usually subject to portfolio constraints 
(Almazan et al., 2004). Certain risky assets are not tradable because the investor cannot sell short with full use of the proceeds. Fama 
and French (2015b) show that, without a short selling constraint, it is easy for an investor who is investing in two anomalies to have 
a leverage ratio of more than 300, which is apparently unrealistic in practice.

Following Pástor and Stambaugh (2000), we assume that the mean-variance investor in the optimization problem (15) is subject 
to the following margin requirements:∑

𝑗∈Λ
2|𝑥𝑗 |+∑

𝑗∉Λ
|𝑥𝑗 | ≤ 𝑐, (17)

where Λ denotes the set of positions in which the short position for the spread return 𝑗 is risky, and 𝑐 is the maximum permitted total 
value of risky long and short positions per dollar of the investor’s wealth. For example, 𝑐 = 2 corresponds to a margin requirement 
of 50% and 𝑐 = 10 corresponds to a margin requirement of 10%. When 𝑐 =∞, there is no margin requirement and the investor will 
invest in the capital market line with the maximum Sharpe ratio that she can obtain.

Another reason for using constraint (17) is that it has a good statistical property when controlling for estimation risk (Fan et al., 
2012). For simplicity, suppose the short position of any spread return 𝑗 in constraint (17) is a risk-free asset. Then, (17) reduces to

𝑛∑
𝑗=1

|𝑥𝑗 | = ‖𝑥‖1 ≤ 𝑐. (18)

Given the true mean 𝜇 and covariance matrix 𝑉 , the utility loss of the optimal portfolio �̃� from using the predictive �̃� and covariance 
𝑉 has an upper bound as:

|||(�̃�′�̃� − 𝛾

2
�̃�′𝑉 �̃�) − (�̃�′𝜇 − 𝛾

2
�̃�′𝑉 �̃�)||| ≤ |||�̃�′�̃� − �̃�′𝜇|+ 𝛾

2
|||�̃�′𝑉 �̃�− �̃�′𝑉 �̃�

|||
𝛾

7

≤ ‖�̃� − 𝜇‖∞‖�̃�‖1 + 2
‖𝑉 − 𝑉 ‖∞‖�̃�‖21, (19)
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Table 3

This table reports the summary statistics of anomaly long-short spread returns, which are from Novy-Marx and Velikov (2016) and used in this paper as non-benchmark 
risky assets in portfolio allocation. Sharpe ratio is reported in an annualized term. 𝛼, 𝑡-stat, and 𝑅2 are based on HXZ and FF5, respectively. Average represents the 
average absolute value of the statistics in the same column. Panel A includes anomalies of return-on-book equity, value-momentum combo, idiosyncratic volatility, 
momentum, and size. Panel B includes anomalies of accruals, net issuance, investment, gross margins, value-momentum-profitability combo, industry momentum, 
industry relative reversals, high-frequency combo, seasonality, and industry low volatility.

HXZ FF5

Shapre ratio 𝛼 𝑡-stat 𝑅2 𝛼 𝑡-stat 𝑅2

Panel A: Anomalies that can be explained by HXZ but not FF5

Return-on-book equity 0.47 0.00 0.01 0.76 0.56 3.91 0.68

Value-momentum combo 0.61 0.03 0.14 0.29 0.46 2.32 0.31

Idiosyncratic volatility 0.29 0.19 1.02 0.73 0.47 2.71 0.77

Momentum 0.56 0.18 0.59 0.29 1.17 4.86 0.52

Size 0.73 0.27 1.39 0.45 0.69 3.43 0.37

Average 0.53 0.13 0.63 0.50 0.67 3.45 0.53

Panel B: Anomalies that cannot be explained by HXZ or FF5

Accruals 0.28 0.38 2.80 0.23 0.31 2.27 0.19

Net issuance 0.88 0.45 3.53 0.25 0.41 3.55 0.35

Investment 0.61 0.30 2.31 0.27 0.33 2.79 0.33

Gross margins 0.02 0.34 2.69 0.34 0.33 2.78 0.38

Value-momentum-profitability combo 1.01 0.89 4.35 0.27 1.23 6.66 0.36

Industry momentum 0.45 0.74 2.59 0.05 0.95 3.47 0.08

Industry relative reversals 0.70 0.95 4.80 0.16 0.74 4.16 0.28

High-frequency combo 1.36 1.32 7.44 0.02 1.38 7.96 0.01

Seasonality 0.69 0.88 4.70 0.09 0.88 4.84 0.09

Industry low volatility 1.07 0.92 5.90 0.13 0.89 5.93 0.16

Average 0.71 0.72 4.11 0.18 0.75 4.44 0.22

where ‖�̃�‖1 is the 𝐿1 norm of vector �̃�, and ‖�̂�−𝜇‖∞ and ‖𝑉 −𝑉 ‖∞ are the maximum component-wise estimation errors.7 Therefore, 
if ‖�̃�‖1 is bounded above (economically, it is a margin requirement), the utility loss resulting from estimation errors is controlled by 
the largest component-wise errors of ‖�̃� − 𝜇‖∞ and ‖𝑉 − 𝑉 ‖∞. As long as each element is accurately estimated, the overall utility is 
approximated well without the accumulation of estimation errors.

3.2. Anomalies that are considered for investing

We consider the anomalies in Novy-Marx and Velikov (2016) as the non-benchmark risky assets. After excluding those that are 
insignificant with FF5, 15 are left, including return-on-book equity, value-momentum combo, idiosyncratic volatility, momentum, 
size, accruals, net issuance, investment, gross margins, value-momentum-profitability combo, industry momentum, industry relative 
reversals, high-frequency combo, seasonality, and industry low volatility. Among these 15 anomalies, the first five are explained by 
HXZ but not FF5, and the remaining 10 are not explained by either HXZ or FF5.

Table 3 reports the summary statistics of the anomalies. Panel A consists of those unexplained by FF5 but not HXZ. The average 
alpha is 0.13% (𝑡 = 0.63) with HXZ and 0.67% (𝑡 = 3.45) with FF5. An interesting observation is that the average 𝑅2 statistics of these 
two models are 50% and 53%, respectively, implying that although HXZ outperforms FF5 in terms of alpha, there are half variations 
in the average anomaly returns unexplained by both of them. Panel B consists of the 10 anomalies unexplained by either HXZ or 
FF5. The average alphas are 0.72% (𝑡 = 4.11) and 0.75% (𝑡 = 4.44), respectively. The average regression 𝑅2s of the two models are 
18% and 22%, suggesting that there are more than three quarters of variations in the average anomaly returns left unexplained by 
both models. Compared with Table 1, the high average annualized Sharpe ratio, 0.71, is slightly smaller than that of the investment 
and profitability factors of HXZ (0.82 and 0.75), but it is larger than any other factors.

3.3. Predictive means and standard deviations

According to (6) and (7), imposing an asset pricing model on the return-generating process with a confidence of 𝜔 has a first-order 
effect on the predictive mean and a second-order effect on the predictive variance. Hence, we examine the predictive means and 
standard deviations of risky assets before analyzing the portfolio decisions. If there are no substantial differences in these parameter 
estimates, it is unlikely that there are dramatic differences in portfolio allocations.

Panels A and B of Table 4 report the predictive means. It is apparent that by varying the confidence 𝜔 and asset pricing model, 
the predictive mean of each asset is dramatically changed. For example, the predictive mean of the return-on-book equity anomaly 
return is 0.71% per month if the investor is agnostic about HXZ or FF5 by setting 𝜔 = 0 (the sample mean in this case). In contrast, 
if the investor believes dogmatically in one of them (𝜔 = 1), the predictive mean is 0.70% with HXZ and 0.25% FF5. The dramatic 

7 If 𝑥 is an 𝑁 -dimensional vector, ‖𝑥‖1 =∑𝑁

𝑗=1 |𝑥𝑗 | and ‖𝑥‖∞ =max𝑗 |𝑥𝑗 |. If 𝑋 is an 𝑀 ×𝑁 -dimensional matrix, ‖𝑋‖∞ =max𝑖
∑𝑁

𝑗=1 |𝑥𝑖,𝑗 |, where 𝑥𝑖,𝑗 is the element 
8

in row 𝑖 and column 𝑗 of 𝑋.
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Table 4

This table reports the predictive means (in percentage) and standard deviations of the anomaly long-short spread returns and different benchmark factors in HXZ and 
FF5, respectively. 𝜔 is the confidence level the investor places in the HXZ or the FF5 model.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.5 𝜔 = 0

HXZ FF5 HXZ FF5 HXZ FF5

Panel A: Predictive means of anomalies that can be explained by HXZ but not FF5

Return-on-book equity 0.70 0.25 0.70 0.36 0.70 0.48 0.71

Value-momentum combo 0.87 0.45 0.87 0.55 0.87 0.66 0.88

Idiosyncratic volatility 0.41 0.19 0.46 0.30 0.51 0.41 0.62

Momentum 1.04 0.24 1.07 0.47 1.10 0.70 1.16

Size 0.86 0.46 0.92 0.63 0.98 0.79 1.11

HML 0.33 0.37 0.34 0.37 0.35 0.37 0.37

CMA 0.36 0.38 0.36 0.38 0.37 0.38 0.38

RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29

I/A 0.44 0.35 0.44 0.37 0.44 0.39 0.44

ROE 0.58 0.19 0.58 0.29 0.58 0.39 0.58

SMB 0.31 0.31 0.31 0.31 0.31 0.31 0.31

MKT 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Panel B: Predictive means of anomalies that cannot be explained by either HXZ or FF5

Accruals −0.07 −0.02 0.01 0.05 0.09 0.12 0.26

Net issuance 0.40 0.41 0.49 0.49 0.58 0.58 0.76

Investment 0.31 0.26 0.37 0.33 0.43 0.40 0.55

Gross margins −0.27 −0.26 −0.20 −0.19 −0.13 −0.12 0.02

Value-momentum-profitability combo 0.71 0.37 0.89 0.64 1.07 0.90 1.43

Industry momentum 0.18 −0.04 0.33 0.17 0.48 0.37 0.78

Industry relative reversals 0.10 0.21 0.30 0.38 0.50 0.55 0.90

High-frequency combo 0.35 0.21 0.63 0.52 0.90 0.83 1.45

Seasonality 0.06 0.03 0.25 0.22 0.43 0.41 0.80

Industry low volatility 0.29 0.26 0.48 0.46 0.68 0.66 1.07

HML 0.33 0.39 0.35 0.39 0.36 0.39 0.39

CMA 0.36 0.37 0.36 0.37 0.36 0.37 0.37

RMW 0.26 0.29 0.27 0.29 0.27 0.29 0.29

I/A 0.44 0.34 0.44 0.37 0.44 0.39 0.44

ROE 0.57 0.18 0.57 0.28 0.57 0.37 0.57

SMB 0.23 0.23 0.23 0.23 0.23 0.23 0.23

MKT 0.53 0.53 0.53 0.53 0.53 0.53 0.53

Panel C: Predictive standard deviations of anomalies that can be explained by HXZ but not FF5

Return-on-book equity 5.30 5.36 5.30 5.35 5.30 5.33 5.30

Value-momentum combo 5.01 5.07 5.01 5.06 5.01 5.04 5.00

Idiosyncratic volatility 7.53 7.55 7.53 7.54 7.52 7.53 7.52

Momentum 7.30 7.39 7.29 7.37 7.29 7.34 7.27

Size 5.36 5.42 5.35 5.40 5.34 5.37 5.31

HML 3.06 3.05 3.06 3.05 3.06 3.05 3.06

CMA 2.03 2.02 2.03 2.02 2.03 2.02 2.02

RMW 2.30 2.28 2.30 2.28 2.29 2.28 2.29

I/A 1.90 1.92 1.90 1.92 1.90 1.91 1.90

ROE 2.64 2.71 2.64 2.70 2.64 2.68 2.64

SMB 3.09 3.09 3.09 3.09 3.09 3.09 3.09

MKT 4.69 4.70 4.69 4.70 4.69 4.70 4.69

Panel D: Predictive standard deviations of anomalies that cannot be explained by either HXZ or FF5

Accruals 3.27 3.27 3.26 3.27 3.26 3.26 3.25

Net issuance 3.12 3.12 3.10 3.10 3.08 3.08 3.05

Investment 3.19 3.19 3.18 3.18 3.17 3.17 3.15

Gross margins 3.26 3.26 3.26 3.26 3.26 3.27 3.27

Value-momentum-profitability combo 5.17 5.22 5.13 5.16 5.09 5.11 5.01

Industry momentum 6.24 6.25 6.22 6.23 6.21 6.22 6.18

Industry relative reversals 4.63 4.63 4.60 4.60 4.58 4.58 4.53

High-frequency combo 4.04 4.05 3.97 3.98 3.90 3.91 3.77

Seasonality 4.21 4.21 4.18 4.19 4.16 4.17 4.12

Industry low volatility 3.67 3.67 3.63 3.63 3.59 3.59 3.51

HML 3.06 3.03 3.06 3.03 3.05 3.03 3.05

CMA 2.02 2.01 2.02 2.01 2.01 2.01 2.01

RMW 2.28 2.26 2.28 2.26 2.28 2.26 2.28

I/A 1.88 1.91 1.88 1.91 1.88 1.90 1.88

ROE 2.63 2.71 2.63 2.70 2.63 2.68 2.63

SMB 3.09 3.10 3.09 3.10 3.09 3.10 3.09

MKT 4.64 4.64 4.64 4.64 4.64 4.64 4.64
9
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estimation bias from using FF5 is due to the fact that FF5 cannot explain the return-on-book equity anomaly. When one imposes a 
constraint by setting the alpha equal to zero when estimating the predictive mean, the estimate is dramatically biased. Instead, since 
HXZ is able to describe the anomaly with an insignificant alpha, the model is likely to capture the true mean of the return-generating 
process and the potential estimation bias is negligible, as the imposed constraint is nearly slack. This argument is supported by Panel 
B of Table 4. Since each anomaly in this panel cannot be explained by the two models, the estimates with them for the predictive 
mean dramatically deviate from the unbiased estimate, the sample mean by setting 𝜔 = 0. For instance, the unbiased predictive mean 
of the accrual anomaly is 0.26% per month, whereas it is −0.07% when using HXZ and −0.02% when using FF5.

Panels C and D of Table 4 report the predictive standard deviations. In contrast with the results in Panels A and B, the difference 
in estimates between the two models is relatively small. This result is consistent with Chan et al. (1999) who show that various 
models for forecasting covariances generally perform quite similarly. In Panel C, although each anomaly can be explained by HXZ 
but not FF5, the estimates of the predictive standard deviations with the two models are virtually the same. When 𝜔 = 1, the biggest 
difference in the estimated predictive standard deviations between the two models is 0.09% in the momentum anomaly, and amounts 
to only 1% of the estimate when 𝜔 = 0 (the case with an unbiased predictive variance estimate). In Panel D, when 𝜔 = 1, the biggest 
difference is 0.08% in the ROE factor, which amounts to approximately 3% of the estimate of 𝜔 = 0.

An interesting observation in Panel D is that the differences between 𝜔 = 1 and 𝜔 = 0 for both models are generally larger than 
that in Panel C. For example, regarding the high-frequency combo anomaly, the predictive standard deviations with the two models 
are 4.04% and 4.05% when 𝜔 = 1, and are both 3.77% when 𝜔 = 0. The biases, 0.27% and 0.28%, amount to approximately 7% 
of 3.77%. We attribute this larger bias between 𝜔 = 1 and 𝜔 = 0 to the larger proportion of variations in the average anomaly 
returns that are left unexplained by the two factor models, as shown by the lower regression 𝑅2s in Table 3. Therefore, when there 
is a significant mispricing error, imposing an asset pricing model leads to a large bias in the estimation of the predictive standard 
deviation. To some extent, our finding is consistent with MacKinlay and Pástor (2000) that when a risk factor is missing from an 
asset pricing model, the resulting mispricing is embedded within the residual covariance matrix.

3.4. In-sample comparison

Table 5 reports optimal allocations per $100 of wealth when prior beliefs are centered on either of the two asset pricing models, 
with varying degrees of confidence 𝜔. The risky assets include the five anomalies that can be explained by HXZ but not FF5 (see 
details in Panel A of Table 3), five factors in FF5, and the investment and profitability factors of HXZ. Hence, the investment universe 
consists of 12 risky assets and one risk-free asset. When the investor employs the HXZ model, the non-benchmark assets are the five 
anomalies plus the HML, CMA, and RMW factors in FF5. Similarly, when FF5 is the asset pricing model, the non-benchmark assets 
are the five anomalies plus the HXZ I/A and ROE factors.

For a given 𝑐, let �̃� be the optimal portfolio under the predictive mean �̃� and covariance 𝑉 . We compute the in-sample expected 
utility or certainty-equivalent return (CER) as:

CER = �̃�′�̃� − 𝛾

2
�̃�′𝑉 �̃�. (20)

Moreover, we calculate the Sharpe ratio as:

Sharpe ratio = �̃�′�̃�√
�̃�′𝑉 �̃�

. (21)

The investing problem (15) treats the risky assets on an individual basis, ignoring the fact that they are constructed as portfolios 
of individual stocks, and a given stock can appear in a non-benchmark portfolio and in each of the benchmark factors. For this 
reason, one can argue that the returns on the risky assets are correlated; large differences in position-by-position allocations need 
not necessarily produce economically significant differences in the overall portfolio characteristics. As a result, the CER and Sharpe 
ratio are more sensible measures for model comparison.

In addition to portfolio weights, the last two rows of each panel in Table 5 report the in-sample CER and Sharpe ratio. To facilitate 
understanding, we multiply the monthly CER by 1,200 to express it as percent per year and multiply the monthly Sharpe ratio by √
12 for an annual value. As confidence decreases, the optimal portfolio converges to the portfolio based on the sample mean and 

covariance matrix of anomaly returns (the case of 𝜔 = 0), regardless of the asset pricing model. The aim here is to explore the extent 
to which this behavior occurs at interesting confidence levels of 𝜔. The results in Table 5 are reported for 𝜔 = 0.75 and 0.5 as well as 
the limiting cases 𝜔 = 1 (exact pricing) and 𝜔 = 0 (no use of a pricing model). We consider two levels of margin requirements, 𝑐 =∞
and 2, which correspond to without a margin requirement and with a 50% margin requirement.

Panel A of Table 5 is the case in which there is no margin requirement, i.e., 𝑐 = ∞. When 𝜔 = 1, each asset pricing model 
estimates the parameters of the non-benchmark assets with zero alphas, the portfolio weights for these assets are zero. As a result, 
the investor allocates her wealth among the factors of the model that she employs. However, when the investor does not have a 
dogmatic belief but places a confidence of 𝜔 = 0.75, she will allocate across all of the risky assets, regardless of the asset pricing 
model. An interesting result with this panel is that, while the portfolio is more diversified when the investor’s confidence level 
decreases, the CER and Sharpe ratio do not improve substantially. Instead, the allocations on the non-benchmark assets are generally 
much smaller than the investments in the factors. In terms of the alternative interpretation of the margin requirements in (19), the 
10

small portfolio weights on the non-benchmark assets are partially due to estimation errors.
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Table 5

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian investor with relative risk aversion equal to 3. 𝑐 is the maximum 
value of risky positions that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include five anomalies 
that can be explained by HXZ but not FF5, five factors in FF5, and investment and profitability factors in HXZ. Also reported are the certainty-equivalent return (CER, 
in % per year), and annualized Sharpe ratio of the portfolio’s return with respect to the given predictive distribution.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.5 𝜔 = 0

HXZ FF5 HXZ FF5 HXZ FF5

Panel A: 𝑐 =∞ (without margin requirement)

Return-on-book equity 0.0 0.0 −16.8 −16.1 −33.7 −32.6 −67.7
Value-momentum combo 0.0 0.0 −15.4 −14.7 −30.9 −29.9 −62.1
Idiosyncratic volatility 0.0 0.0 13.7 13.1 27.5 26.6 55.2

Momentum 0.0 0.0 10.3 9.9 20.7 20.1 41.6

Size 0.0 0.0 17.7 16.9 35.5 34.4 71.3

HML 0.0 −70.9 12.8 −41.3 25.7 -11.2 51.7

CMA 0.0 577.8 28.7 463.7 57.5 350.3 115.6

RMW 0.0 376.7 −2.9 281.7 −5.7 186.5 −11.5
I/A 597.3 0.0 560.9 105.0 524.9 213.6 454.1

ROE 416.5 0.0 403.3 84.8 390.4 172.5 365.6

SMB 238.2 161.3 255.6 194.2 273.4 229.4 309.8

MKT 180.6 187.6 189.2 192.2 198.2 198.5 216.6

CER 40.7 27.4 40.8 28.3 41.2 31.0 42.6

Sharpe ratio 1.56 1.28 1.57 1.30 1.57 1.36 1.60

Panel B: 𝑐 = 2 (with margin requirement)

Return-on-book equity 19.8 0.0 18.7 0.0 17.6 6.8 3.5

Value-momentum combo 37.3 12.6 34.3 29.6 31.3 40.2 19.8

Idiosyncratic volatility 0.0 6.5 0.0 14.5 0.0 14.4 12.1

Momentum 12.4 0.0 16.4 0.0 20.4 0.0 31.0

Size 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HML 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CMA 0.0 44.7 0.0 16.6 0.0 0.0 0.0

RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROE 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MKT 61.0 72.5 61.2 78.5 61.4 77.1 67.2

CER 9.0 6.2 9.1 6.6 9.2 7.3 9.5

Sharpe ratio 0.93 0.75 0.93 0.75 0.92 0.79 0.91

When the investor knows the mean and covariance, the CER is 42.6%. When she does not know the mean and covariance and 
assumes a factor structure to estimate, the CER from using HXZ is at least 40.7%, close to 42.6%. In contrast, the CER from using FF5 
is at most 31.0%, far less than 42.6%. The performance difference is mainly due to the fact that HXZ can price all the non-benchmark 
assets and imposing a factor structure does not make the estimation biased. Instead, FF5 cannot price all the non-benchmark assets 
and imposing a factor structure makes the estimation biased. As a result, HXZ outpreforms FF5.

Panel B reports the results of 𝑐 = 2, which is a constraint with a 50% margin requirement. In this case, the CER reduces dramat-

ically. Even if the investor knows the true mean and covariance (𝜔 = 0), the CER is only 9.5%, much smaller than the counterpart 
42.6% in Panel A that does not impose a margin requirement. The first two columns of Panel B, with 𝜔 = 1, display the allocations 
corresponding to the dogmatic beliefs in each of the two asset pricing models. In this case, each asset pricing model estimates the 
parameters of the non-benchmark assets by restricting alphas equal to zero. According to Table 3 and Hou et al. (2019), ex post, 
HXZ explains the average returns of the five anomalies and the HML, CMA, and RMW factors. Hence, the zero alpha constraint when 
using HXZ is nearly slack and innocuous. With this tight margin requirement constraint, the optimal portfolio under the HXZ model 
includes four assets: return-on-book equity (19.8), value-momentum combo (37.3), momentum (12.4), and MKT (61.0), where only 
MKT is a benchmark asset. This result seems counterintuitive. HXZ can explain all the non-benchmark assets, so the investor should 
allocate all his investment among the HXZ factors. However, because of margin requirements, the investor cannot invest as much 
as Panel A in the HXZ factors. For this reason, she switches to non-benchmark assets for risk diversification. FF5 cannot explain the 
non-benchmark assets, so it is not surprising that the investor who imposes an FF5 factor structure invests in these non-benchmark 
assets. Because of model misspecification, FF5 underperforms HXZ in terms of CER. However, the underperformance is much less 
pronounced than in the case without a margin requirement.

Table 6 reports the optimal portfolio choices, CERs, and Sharpe ratios when the investment universe of risky assets are the 10 
anomalies, five FF5 factors, and HXZ’s I/A and ROE factors. The key difference between Tables 5 and 6 is that each of the anomaly 
returns in Tables 6 cannot be explained by either HXZ or FF5. From Table 3, both models have similar degrees of mispricing errors 
for the 10 anomalies. In Panel A, when there is no margin requirement, HXZ underperforms the case when the investor knows the 
mean and covariance, but it still outperforms FF5. Hence, the model misspecification for imposing the HXZ factor structure is less 
severe than imposing the FF5 factor structure. However, when including a margin requirement in Panel B, the outperformance of 
11

HXZ become negligible.
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Table 6

This table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the maximum value 
of risky positions that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include 10 anomalies that 
cannot be explained by either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. Also reported are the certainty-equivalent return (CER, 
in % per year), and annualized Sharpe ratio of the portfolio’s return with respect to the given predictive distribution.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.5 𝜔 = 0

HXZ FF5 HXZ FF5 HXZ FF5

Panel A: 𝑐 =∞ (without margin requirement)

Accruals 0.0 0.0 23.9 22.8 50.9 49.2 117.1

Net issuance 0.0 0.0 34.9 33.3 74.4 71.9 171.1

Investment 0.0 0.0 15.4 14.7 32.8 31.6 75.3

Gross margins 0.0 0.0 20.3 19.4 43.3 41.8 99.6

Value-momentum-profitability combo 0.0 0.0 28.5 27.1 60.6 58.5 139.3

Industry momentum 0.0 0.0 6.0 5.7 12.8 12.4 29.5

Industry relative reversals 0.0 0.0 34.0 32.4 72.4 69.9 166.4

High-frequency combo 0.0 0.0 50.8 48.4 108.3 104.5 248.8

Seasonality 0.0 0.0 27.8 26.5 59.2 57.1 136.0

Industry low volatility 0.0 0.0 44.8 42.7 95.4 92.1 219.3

HML 0.0 −39.2 3.4 −26.5 7.2 −13.2 16.5

CMA 0.0 531.3 19.7 421.1 41.9 313.8 96.3

RMW 0.0 357.2 −5.6 265.2 −11.9 172.3 −27.4
I/A 598.0 0.0 504.5 49.2 417.6 106.2 269.5

ROE 396.6 0.0 379.0 74.9 371.4 161.6 395.8

SMB 201.5 127.2 184.9 127.1 172.4 131.8 163.7

MKT 178.2 182.7 157.7 160.0 140.1 140.7 116.1

CER 37.8 24.5 41.3 28.4 52.5 41.4 105.4

Sharpe ratio 1.51 1.21 1.57 1.31 1.78 1.58 2.52

Panel B: 𝑐 = 2 (with margin requirement)

Accruals 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Net issuance 0.0 26.6 0.0 34.3 0.0 0.0 0.0

Investment 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Gross margins 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Value-momentum-profitability combo 33.1 3.6 54.8 30.6 51.7 42.3 33.7

Industry momentum 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Industry relative reversals 0.0 0.0 0.0 0.0 0.0 0.0 0.0

High-frequency combo 0.0 0.0 4.3 3.1 30.7 37.5 66.3

Seasonality 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Industry low volatility 0.0 0.0 0.0 0.0 0.0 0.4 0.0

HML 0.0 25.6 0.0 1.2 0.0 0.0 0.0

CMA 0.0 11.3 0.0 0.0 0.0 0.0 0.0

RMW 0.0 0.0 0.0 0.0 0.0 0.0 0.0

I/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROE 39.4 0.0 13.8 0.0 0.0 0.0 0.0

SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MKT 55.0 65.8 54.3 61.6 35.3 39.7 0.0

CER 7.4 5.9 8.4 6.8 10.3 9.1 15.6

Sharpe ratio 0.88 0.75 0.89 0.80 1.10 0.99 1.62

As a mean-variance investor, if the distribution of asset returns is known, imposing an asset pricing model by setting alphas equal 
to zero can lead to biased estimates of the portfolio parameters, which gives rise to a CER loss. A better asset pricing model is the 
one that yields smaller biases in the predictive mean and covariance matrix. As a result, it should have a smaller CER loss. Suppose 
the true mean and covariance matrix are 𝜇 and 𝑉 , and 𝑥𝑜 is the resulting optimal portfolio for a given 𝑐. We calculate the CER as 
CER𝑜 = 𝑥′

𝑜
𝜇 − 𝛾

2𝑥
′
𝑜
𝑉 𝑥𝑜. Then we calculate the CER of a suboptimal allocation 𝑥𝑠 as CER𝑠 = 𝑥′

𝑠
𝜇 − 𝛾

2𝑥
′
𝑠
𝑉 𝑥𝑠, where 𝑥𝑠 is an allocation 

that is optimal for the same 𝑐 and 𝜔 under the predictive distribution from imposing an asset pricing model. For example, if an asset 
pricing model is imposed, 𝑥𝑠 is the optimal allocation from using the predictive mean and covariance matrix, �̃� and 𝑉 , that are 
estimated according to (6) and (7). The difference CER𝑜 −CER𝑠 provides an economic measure of CER loss from imposing a pricing 
constraint on the distribution of asset returns.

Fig. 3 displays the annualized CER losses for an investor who believes in the sample mean and covariance matrix that are 
estimated without imposing any asset pricing model, but is forced to hold a portfolio chosen by another investor with a confidence 
𝜔 in HXZ or FF5. The risky assets are the same as Table 5, including five anomalies that can be explained by HXZ but not FF5, five 
factors in FF5, and the investment and profitability factors in HXZ. For each of four values of 𝑐, the figure plots the CER loss versus 
confidence 𝜔. Losses are calculated for portfolios from HXZ and from FF5. The goal is to explore whether HXZ is a better model for 
investing when it is a better model for pricing, as shown in Panel A of Table 3.

Fig. 3 makes three statements. First, the CER loss increases monotonically with respect to the confidence level 𝜔. When 𝜔 = 0, the 
12

investor does not believe in the asset pricing model and the predictive mean and covariance matrix are the same as the sample mean 
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Fig. 3. This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-variance investor, who knows the true 
mean and covariance but is forced to hold the portfolio chosen by another investor who places a confidence 𝜔 in HXZ or FF5. The portfolio consists of five anomalies 
that can be explained by HXZ but not FF5, five factors in FF5, and investment and profitability factors in HXZ. The sample mean and covariance are assumed to be 
the true mean and covariance. 𝑐 is the maximum value of risky positions that can be established per dollar of wealth. The investor’s risk aversion is set to 3.

Fig. 4. This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-variance investor, who knows the true 
mean and covariance but is forced to hold the portfolio chosen by another investor who places a confidence 𝜔 in HXZ or FF5. The portfolio consists of 10 anomalies 
that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. 𝑐 is the maximum value of risky positions that can 
13

be established per dollar of wealth. The sample mean and covariance are assumed to be the true mean and covariance. The investor’s risk aversion is set to 3.
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Fig. 5. This figure plots the in-sample certainty-equivalent return (CER, in % per year) loss from the perspective of a mean-variance investor, who believes in HXZ 
with a confidence 𝜔 but is forced to hold the portfolio chosen by another investor with the same degree of confidence in FF5 (left two panels), and vice versa (right 
two panels). In addition to the five factors in FF5 and the investment and profitability factors in HXZ, the risky assets are five anomalies that can be explained by HXZ 
but not FF5 (upper two panels), or 10 anomalies that cannot be explained by either HXZ or FF5. 𝑐 is the maximum value of risky positions that can be established per 
dollar of wealth. The investor’s risk aversion is set to 3.

and covariance matrix. In this case, there is no CER loss. When 𝜔 increases, the investor places a larger weight on the mean and 
covariance matrix that are estimated by setting the alphas of non-benchmark assets equal to zero. The resulting predictive mean and 
covariance matrix are more likely to be biased, and therefore, the CER loss is more likely to increase. Second, the CER loss increases 
with respect to 𝑐. As 𝑐 increases, the constraint of margin requirements becomes less likely to be binding and the optimal portfolio is 
closer to the one suggested by the predictive mean and covariance matrix. Hence, the CER loss increases. Finally, HXZ outperforms 
FF5 when the investor has a dogmatic belief in HXZ and does not suffer from a margin requirement. In a more realistic setting, if the 
investor does not have a dogmatic belief in HXZ and suffers from a margin requirement, HXZ performs similarly as FF5.

Fig. 4 displays the annualized CER losses for the case in which 10 anomaly spread returns cannot be explained by either HXZ or 
FF5. As in Fig. 3, the investor is assumed to believe in the sample mean and covariance matrix but is forced to hold the portfolio 
chosen by another investor with confidence 𝜔 in HXZ or FF5. The risky assets are those in Table 6. The goal here is to explore 
whether HXZ is a better model for investing even when it performs similarly to FF5 for pricing the anomalies in Panel B of Table 3. 
Overall, the performance difference between the two models is similar as Fig. 3.

Fig. 5 displays precisely the same analysis except that the CER losses are computed for an investor who believes in HXZ with 
confidence 𝜔 but is forced to hold the portfolio chosen by another investor with the same degree of confidence in FF5 (left two 
panels), and vice versa (right two panels). The upper two panels correspond to the risky assets in Fig. 3 and the lower two panels 
correspond to the risky assets in Fig. 4. When 𝜔 = 1 and 𝑐 = 2, the CER loss for the investor who believes in one model but is forced 
to use another model is always less than 2% per year. When 𝑐 = 10, the CER losses for the investor who believes HXZ but is forced 
to use FF5 are more than 7% per year, which is an economically large magnitude, regardless of the risky assets. Similarly, the CER 
losses for the investor who believes in FF5 but is forced to use HXZ are about 6% per year. When 𝑐 =∞, all of the CER losses are 
more than doubled, in comparison to 𝑐 = 10.

3.5. Out-of-sample comparison

A model with better in-sample performance for investing does not necessarily mean it has better out-of-sample performance 
because of estimation errors. For example, DeMiguel et al. (2009b) report that the Sharpe ratio is 0.219 for the mean-variance model 
with assets MKT, SMB, and HML, whereas the Sharpe ratio is 0.096 with assets MKT, SMB, HML, momentum, 10 book-to-market 
14

portfolios, and 10 size portfolios. This example suggests that comparing models out-of-sample is important in that adding more 
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Table 7

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the maximum value of risky positions 
that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include five anomalies that can be explained 
by HXZ but not FF5, five factors in FF5, and investment and profitability factors in HXZ. We randomly sample (with replacement) 𝑇 + 300 returns of the risky assets 
and use the first 𝑇 to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample CER. The procedure is 
repeated 1,000 times; average CERs are shown.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.50 𝜔 = 0

𝑇 HXZ FF5 HXZ FF5 HXZ FF5

Panel A: 𝑐 =∞ (without margin requirement)

60 14.8 −4.0 10.9 −0.7 −3.6 −8.0 −90.1
120 29.3 14.0 27.9 18.9 22.5 18.9 −4.6
240 35.2 21.1 34.8 26.7 32.6 29.3 21.8

360 37.3 23.3 37.2 29.2 35.9 32.5 29.6

600 38.7 24.9 38.8 30.8 38.2 34.7 34.8

Panel B: 𝑐 = 2 (with margin requirement)

60 6.3 4.6 6.4 5.4 6.5 5.9 6.2

120 7.5 5.6 7.7 6.5 7.7 7.1 7.5

240 8.7 6.5 8.9 7.6 8.9 8.4 8.7

360 9.2 6.8 9.4 8.1 9.4 8.9 9.2

600 9.6 7.3 9.8 8.8 9.9 9.5 9.8

assets could reduce portfolio performance if the estimation errors are not controlled. Kan and Wang (2019) explicitly consider the 
out-of-sample utility loss using the sample mean and covariance matrix.8

3.5.1. Pseudo out-of-sample analysis

We follow Kozak et al. (2018) and perform a bootstrap simulation for out-of-sample comparison, which maintains the i.i.d 
property over time, an assumption made in the main framework. We randomly sample (with replacement) 𝑇 + 300 returns on the 
risky assets and use the first 𝑇 to calculate the portfolio weights, which are used for the remaining 300 observations to calculate the 
out-of-sample CER (CEROS),

CEROS = �̂��̃� −
𝛾

2
�̂�2
�̃�
, (22)

where �̂�𝑥 and �̂�2
�̃�

are the sample mean and variance of the 300 out-of-sample excess returns of portfolio �̃� that is based on the first 𝑇
observations. We repeat the procedure 1,000 times and report the average CEROS. As the sample size is important for out-of-sample 
performance, we consider five values for 𝑇 : 60, 120, 240, 360, and 600.

Table 7 reports the annualized CEROS for investing in the anomalies that can be explained by HXZ but not FF5. There are three 
observations. First, for given values of 𝑐 and 𝜔, the CEROS increases as the sample size 𝑇 increases. For example, when 𝑐 = ∞
(wihtout margin requirement) and 𝜔 = 1, the annualized CEROS of HXZ is 14.8% when 𝑇 = 60, and it increases monotonically to 
38.7% when 𝑇 = 600. In constrast, the annualized CEROS of FF5 increases from −4.0% to 24.9% in this case. Second, when 𝑐 = 2, 
even HXZ is a “correct” pricing model and explains all of the anomalies, its CEROS reduces dramatically relative to 𝑐 =∞ and does 
not increase much as 𝑇 increases. For example, in the case of 𝜔 = 1, the annualized CEROS of HXZ is 6.3% when 𝑇 = 60, and it 
increases slightly to 9.6% when 𝑇 = 600. This pattern holds true for FF5. Finally, the outperformance of HXZ becomes smaller when 
estimation errors are larger (e.g., estimating the model with a small sample size), which is further confirmed in Table 8 if the investor 
looks at the annualized Sharpe ratios. This conclusion continues to be true when the non-benchmark assets are the anomalies that 
cannot be explained by either HXZ or FF5 (Tables 9 and 10).

3.5.2. Real-time out-of-sample analysis

The previous analysis assumes that the risky returns are i.i.d over time. In practice, however, this assumption does not hold 
and expected returns do vary over time,9 which means that the expected returns are moving targets and can never be estimated 
accurately (Gârleanu and Pedersen, 2013). As such, the outperformance of the HXZ model in the previous subsection may not exist 
in real time.

We use an expanding window approach to compare their out-of-sample performances. With an initial window of 120 months, 
in each month 𝑡, we use data from month 1 to month 𝑡 to compute the various portfolio rules, and apply them to determine the 
investments in the next month. For instance, let �̃�𝑡 be the estimated optimal portfolio in month 𝑡 and 𝑟𝑡+1 be the excess return on the 
risky assets realized in month 𝑡 + 1. The realized excess return on the portfolio is 𝑟�̃�,𝑡+1 = �̃�′

𝑡
𝑟𝑡+1. We then compute the average value 

of the realized returns, �̂��̃�, and the variance, �̂�2
�̃�
. The out-of-sample CER can be calculated accordingly.

8 In the literature, there is a large number of papers that explain why the out-of-sample performance could be poor and how to improve it, such as MacKinlay and 
Pástor (2000), Jagannathan and Ma (2003), Siegel and Woodgate (2007), Kan and Zhou (2007), Garlappi et al. (2007), DeMiguel et al. (2009a), Tu and Zhou (2011), 
and DeMiguel et al. (2013), among others.
15

9 We keep the normality assumption as it works well in evaluating portfolio performance in a mean-variance framework (Tu and Zhou, 2004).
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Table 8

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the maximum value of risky positions that 
can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include five anomalies that can be explained by 
HXZbut not FF5, five factors in FF5, and investment and profitability factors in HXZ. We randomly sample (with replacement) 𝑇 + 300 returns of the risky assets and 
use the first 𝑇 to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample Sharpe ratio. The procedure is 
repeated 1,000 times; average Sharpe ratios (annualized by multiplying 

√
12) are shown.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.50 𝜔 = 0

𝑇 HXZ FF5 HXZ FF5 HXZ FF5

Panel A: 𝑐 =∞ (without margin requirement)

60 1.34 0.98 1.32 1.07 1.24 1.08 1.06

120 1.45 1.11 1.44 1.22 1.38 1.26 1.24

240 1.51 1.19 1.51 1.32 1.48 1.38 1.38

360 1.54 1.22 1.54 1.36 1.52 1.43 1.44

600 1.55 1.25 1.56 1.39 1.55 1.47 1.50

Panel B: 𝑐 = 2 (with margin requirement)

60 0.71 0.63 0.72 0.67 0.71 0.69 0.68

120 0.79 0.72 0.80 0.76 0.80 0.77 0.77

240 0.88 0.79 0.89 0.85 0.88 0.87 0.86

360 0.92 0.84 0.93 0.90 0.93 0.92 0.90

600 0.97 0.88 0.98 0.95 0.98 0.97 0.96

Table 9

This table reports the out-of-sample CER (in % per year) for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the maximum value of risky positions 
that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include 10 anomalies that cannot be explained 
by either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. We randomly sample (with replacement) 𝑇 +300 returns of the risky assets 
and use the first 𝑇 to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample CER. The procedure is 
repeated 1,000 times; average CERs are shown.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.50 𝜔 = 0

𝑇 HXZ FF5 HXZ FF5 HXZ FF5

Panel A: 𝑐 =∞ (without margin requirement)

60 11.3 −7.1 31.3 17.8 35.7 29.2 −146
120 25.9 10.8 49.5 38.8 63.8 58.5 13.8

240 31.7 17.7 56.6 46.6 75.1 69.8 66.3

360 33.9 20.0 58.9 48.9 78.3 72.9 80.7

600 35.4 21.6 60.5 50.7 81.0 75.5 91.6

Panel B: 𝑐 = 2 (with margin requirement)

60 6.7 5.1 8.6 7.6 10.4 10.0 11.7

120 7.9 5.7 10.1 9.0 12.0 11.6 13.1

240 8.7 6.3 11.0 9.8 13.0 12.6 14.0

360 9.0 6.5 11.4 10.2 13.4 13.0 14.4

600 9.3 6.7 11.7 10.2 13.8 13.5 14.9

Table 10

This table reports the out-of-sample Sharpe ratio for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the maximum value of risky positions that 
can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include 10 anomalies that cannot be explained by 
either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. We randomly sample (with replacement) 𝑇 + 300 returns of the risky assets 
and use the first 𝑇 to calculate the portfolio weights, which are used to the remaining 300 observations for calculating the out-of-sample Sharpe ratio. The procedure 
is repeated 1,000 times; average Sharpe ratios (annualized by multiplying 

√
12) are shown.

𝜔 = 1 𝜔 = 0.75 𝜔 = 0.50 𝜔 = 0

𝑇 HXZ FF5 HXZ FF5 HXZ FF5

Panel C: 𝑐 =∞
60 1.28 0.91 1.62 1.38 1.78 1.65 1.76

120 1.39 1.04 1.81 1.62 2.03 1.94 2.06

240 1.45 1.11 1.91 1.76 2.18 2.13 2.25

360 1.47 1.14 1.94 1.81 2.24 2.20 2.33

600 1.49 1.17 1.98 1.85 2.29 2.26 2.41

Panel A: 𝑐 = 2
60 0.85 0.72 0.99 0.94 1.13 1.11 1.21

120 0.97 0.79 1.11 1.07 1.25 1.26 1.35

240 1.04 0.84 1.18 1.15 1.33 1.35 1.46

360 1.08 0.87 1.21 1.19 1.38 1.41 1.52

600 1.12 0.89 1.23 1.22 1.43 1.48 1.58
16
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Fig. 6. This figure plots the out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance investor with risk aversion equal to 3. 𝑐 is the 
maximum value of risky positions that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include 
five anomalies that can be explained by HXZ but not FF5, five factors in FF5, and investment and profitability factors in HXZ. We use an expanding window approach 
in calculating the out-of-sample CER, where the initial window is 120 months. In each month 𝑡, we use data from month 1 to month 𝑡 to compute the various portfolio 
rules, and apply them to determine the investments in the next month. For instance, let �̃�𝑡 be the estimated optimal portfolio in month 𝑡 and 𝑟𝑡+1 be the excess return 
on the risky assets realized in month 𝑡 +1. The realized excess return on the portfolio is 𝑟�̃�,𝑡+1 = �̃�′

𝑡
𝑟𝑡+1 . We then compute the mean and variance of the realized returns 

as �̂��̃� and �̂�2
�̃�
. The out-of-sample CER is thus given by CEROS = �̂��̃� − 𝛾�̂�2

�̃�
∕2.

Fig. 6 plots the CEROSs for investing in anomalies that can be explained by HXZ but not FF5. As shown in Table 7, when 𝜔 is 
high, the difference in CEROSs between HXZ and FF5 is economically significant. For example, when 𝜔 = 1, the CEROS values for 
the two models are 22.2% and 16.3% at 𝑐 = 10, and 28.3% and 20.6% at 𝑐 = 20, respectively. The difference in CEROSs suggests that 
the HXZ outperforms the FF5 by 5.8% or 6.7% per year when the investor is subject to a 10% or 5% margin requirement. However, 
when 𝜔 is low, the investor faces more model uncertainty, HXZ performs similarly as FF5. In the case of no margin requirement, it 
could even underperforms FF5. Fig. 7 plots the CEROS values for investing in the anomalies that cannot be explained by either HXZ 
or FF5, and delivers a similar pattern as Fig. 6.

4. Source of difference between HXZ and FF5

In the mean-variance framework, the only two parameters are the predictive mean and covariance matrix of risky assets. The 
better investing performance of HXZ, if there is any, must come from its better ability to capture the mean, the covariance matrix, 
or both.

This subsection considers the global-minimum-variance portfolio allocation. That is, the investor chooses portfolio 𝑥 to minimize 
𝑥′𝑉 𝑥 with the margin requirement (17), where 𝑉 is the predictive covariance matrix and is given in (7). Mathematically, this is an 
extreme case of (15) with 𝛾 =∞. The goal here is to show that whether the estimates of 𝑉 with HXZ and FF5 are different enough 
to yield different portfolios.

Figs. 8 and 9 plot the in-sample annualized Sharpe ratio losses from the perspective of a global-minimum-variance investor, who 
knows the true mean and covariance matrix but is forced to hold the global-minimum-variance portfolio chosen by another investor 
who places a confidence of 𝜔 in HXZ or FF5, where the sample mean and covariance matrix are assumed to be the true mean and 
covariance matrix. In addition to the five factors in FF5 and investment and profitability factors in HXZ, the risky assets also include 
five anomalies that can be explained by the HXZ but not the FF5 model (Fig. 8), or 10 anomalies that cannot be explained by the 
HXZ or the FF5 (Fig. 9).

A striking pattern in Fig. 8 is that the Sharpe ratio loss is negligible and is always less than 0.1 for both models, regardless of 𝑐
and 𝜔. In fact, the Sharpe ratio losses are virtually the same when 𝑐 exceeds 10. This suggests that imposing one of the two asset 
pricing models does not lead to a significant bias for estimating the risky assets’ covariance matrix. In Fig. 9, the Shapre ratio loss 
is large; it is at least 0.2 for both models. However, the losses for the HXZ and FF5 are similar for a given 𝑐 and 𝜔, suggesting that 
17

the predictive means and covariance matrix with the two pricing models are biased and similar. The evidence in these two figures is 
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Fig. 7. This figure plots the out-of-sample certainty-equivalent return (CER, in % per year) for a mean-variance Bayesian investor with risk aversion equal to 3. 𝑐 is the 
maximum value of risky positions that can be established per dollar of wealth. 𝜔 is the confidence level the investor places in HXZ or FF5. The risky assets include 10 
anomalies that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. We use an expanding window approach 
in calculating the out-of-sample CER, where the initial window is 120 months. In each month 𝑡, we use data from month 1 to month 𝑡 to compute the various portfolio 
rules, and apply them to determine the investments in the next month. For instance, let �̃�𝑡 be the estimated optimal portfolio in month 𝑡 and 𝑟𝑡+1 be the excess return 
on the risky assets realized in month 𝑡 +1. The realized excess return on the portfolio is 𝑟�̃�,𝑡+1 = �̃�′

𝑡
𝑟𝑡+1 . We then compute the mean and variance of the realized returns 

as �̂��̃� and �̂�2
�̃�
. The out-of-sample CER is thus given by CEROS = �̂��̃� − 𝛾�̂�2

�̃�
∕2.

Fig. 8. This figure plots the in-sample annualized Sharpe ratio loss from the perspective of a global-minimum-variance investor, who knows the true mean and 
covariance but is forced to hold the global-minimum-variance portfolio chosen by another investor who places a confidence 𝜔 in HXZ or FF5. The risky assets include 
five anomalies that can be explained by HXZ but not FF5, five factors in FF5, and investment and profitability factors in HXZ. 𝑐 is the maximum value of risky 
18

positions that can be established per dollar of wealth. The sample mean and covariance are assumed to be the true mean and covariance.
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Fig. 9. This figure plots the in-sample annualized Sharpe ratio loss from the perspective of a global-minimum-variance investor, who knows the true mean and 
covariance but is forced to hold global-minimum-variance portfolio chosen by another investor who places a confidence 𝜔 in HXZ or FF5. The risky assets include 
10 anomalies that cannot be explained by either HXZ or FF5, five factors in FF5, and investment and profitability factors in HXZ. 𝑐 is the maximum value of risky 
positions that can be established per dollar of wealth. The sample mean and covariance are assumed to be the true mean and covariance.

similar to Chan et al. (1999), who focus on individual stocks and find that the Fama-French three-factor model performs the same as a 
nine-factor model under the global-minimum-variance criterion. With this exercise, one can conclude that HXZ does not outperform 
FF5 in describing the covariance matrix of asset returns.

5. Conclusion

There are two schools of thought in empirical asset pricing. One school tries to identify new factors that generate abnormal returns 
relative to commonly used asset pricing models, and the other school attempts to choose a couple of factors from existing ones to 
construct a new asset pricing model. Both schools have been successful in the past four decades. The former has identified more than 
300 factors (see, e.g., Harvey et al. 2016), and the latter has proposed the HXZ, FF5, Stambaugh and Yuan (2017) mispricing-factor 
model, Daniel et al. (2020) behavioral-factor model, etc. When introducing a new model, it is typically examined for its superior 
pricing capabilities compared to current ones, encapsulated by the saying “it takes a model to beat a model.”

Instead of exploring the pricing ability, in this paper we are interested in the investing implications of the two representative 
models, HXZ and FF5. We argue that although HXZ has better pricing power, documented in Hou et al. (2019), its suggested strategies 
ignore margin requirements and model uncertainty and, therefore, are hard to implement in practice. We show that if an investor 
is subject to margin requirements and model uncertainty, she would not benefit much from using HXZ, relative to FF5. That is, the 
difference between the two models for investing is not economically significant, if there is any.

There are several limitations or directions for future research. It is interesting to examine how transaction costs affect the investing 
performance in our framework, in a similar spirit of Detzel et al. (2023) and Li et al. (2023). This paper assumes that asset returns are 
i.i.d over time. It is of interest to relax this assumption and explore how conditional information affects the investing performance of 
the two models. While the investment framework does incorporate the investor’s varying beliefs in the asset pricing models, it does 
not address the linkage between the priors and the economic objectives, which can significantly improve the investing performance 
(Tu and Zhou, 2010).

Appendix A
19

This appendix describes the abbreviations of the main variables used in this paper.
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HXZ Hou et al. (2015) four-factor model

FF5 Fama and French (2015a) five-factor model

CER certainty-equivalent return

ME size factor in HXZ

I/A investment factor in HXZ

ROE profitability factor in HXZ

MKT market factor in FF5

CMA investment factor in FF5

RMW profitability factor in FF5

SMB size factor in FF5

HML value factor in FF5
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